

PyTRiP98 Documentation

Contents:

	Getting Started with PyTRiP
	Introduction

	Quick Installation Guide

	Using PyTRiP

	Support

	Next Steps

	License

	Detailed Installation Guide
	Prerequisites

	Installing using pip (all platforms)

	PyTRiP User’s Guide
	Using PyTRiP as a library

	Converters

	Examples
	Example 00 - Cube arithmetic

	Example 01 - Handling structures

	Example 02 - TRiP execution

	Credits
	Development

	Contributors

	How to cite PyTRiP98

	Others

	Source Code
	Subpackages

	Submodules

Indices and tables

	Index

	Module Index

	Search Page

Getting Started with PyTRiP

Brief overview of PyTRiP98 and how to install it.

Introduction

PyTRiP98 is a python package for working with files generated by the treatment planning systems
TRiP98 [http://bio.gsi.de/DOCS/TRiP98/PRO/DOCS/trip98.html] and
VIRTUOS/VOXELPLAN [https://www.dkfz.de/en/medphys/Therapy_planning_development/Projects/Virtuos.html]. Dicom files are also to some extent supported.

PyTRiP will simplify importing and exporting files, processing the data, and also execute TRiP98 locally or remotely.
Thereby it is possible to work with TRiP98 in e.g. a Windows environment, while accessing TRiP98 on a remote server.
PyTRiP enables scripting for large parameters studies of treatment plans, and also more advanced and automized
manipulation than what commercial treatment planning systems might allow.

Let us for instance assume, that one wants (for whatever reason) to reduce all Hounsfield units in a CT cube with a factor of two and write the result into a new file, this can be realized with a few lines of code.

>>> import pytrip as pt
>>> c = pt.CtxCube()
>>> c.read("tst000001.ctx") # read a .ctx file

Where the first line imports the pytrip modules, the second line initialized the CtxCube object. The new
object holds (among others) the read() method, which is then being used to load the CT data.
Now let’s work with the CT data:

>>> c *= 0.5 # reduce all HUs inside c with a factor of two

and write it to disk.

>>> c.write("out0000001.ctx") # write the new file.

And that all.

We may want to inspect the data, what is the largest and the smalles HU value found in the cube?

>>> print(c.cube.min())
>>> print(c.cube.max())

To see all available methods and attributes, one can run the

>>> dir(c)

command, or read the detailed documentation.

Quick Installation Guide

PyTRiP is available for python 2.7, 3.5 or later, and can be installed via pip. If you intend to use pytripgui you
need the python 2.7 version.

We recommend that you run a modern Linux distribution, like: Ubuntu 16.04 or newer, Debian 9 Stretch
(currently known as testing) or any updated rolling release (archLinux, openSUSE tumbleweed). In that case,
be sure you have python and python-pip installed.
To get them on Debian or Ubuntu, type being logged in as normal user:

$ sudo apt-get install python-pip

To automatically download and install the pytrip library, type:

$ sudo pip install pytrip98

NOTE: the package is named pytrip98, while the name of library is pytrip.

This command will automatically download and install pytrip for all users in your system.

For more detailed instruction, see the Detailed Installation Guide

To learn how to install pytripgui graphical user interface, proceed to following document page:
https://github.com/pytrip/pytripgui

Using PyTRiP

Once installed, the package can be imported at a python command line or used
in your own python program with import pytrip as pt.
See the examples directory [https://github.com/pytrip/pytrip/tree/examples]
for both kinds of uses. Also see the User’s Guide
for more details of how to use the package.

Support

Bugs can be submitted through the issue tracker [https://github.com/pytrip/pytrip/issues].
Besides the example directory, cookbook recipes are encouraged to be posted on the
wiki page [https://github.com/pytrip/pytrip/wiki]

Next Steps

To start learning how to use PyTRiP, see the PyTRiP User’s Guide.

License

PyTRiP98 is licensed under GPLv3 [https://github.com/pytrip/pytrip/blob/master/source/GPL_LICENSE].

Detailed Installation Guide

Installation guide is divided in two phases: checking the prerequisites and main package installation.

Prerequisites

PyTRiP works under Linux and Mac OSX operating systems.

First we need to check if Python interpreter is installed.
Try if one of following commands (printing Python version) works:

$ python --version
$ python3 --version

At the time of writing Python language interpreter has two popular versions: 2.x (Python 2) and 3.x (Python 3) families.
Command python invokes either Python 2 or 3, while python3 can invoke only Python 3.

pytrip supports most of the modern Python versions, mainly: 2.7, 3.5 - 3.10.
Check if your interpreter version is supported.

If none of python and python3 commands are present, then Python interpreter has to be installed.

We suggest to use the newest version available (from 3.x family).

Python installers can be found at the python web site
(http://python.org/download/).

PyTRiP also relies on these packages:

	NumPy [http://www.numpy.org/] – Better arrays and data processing.

	matplotlib [http://matplotlib.org/] – Needed for plotting.

	paramiko [http://www.paramiko.org/] – Needed for remote execution of TRiP98 via SSH.

and if they are not installed beforehand, these will automatically be fetched by pip.

Installing using pip (all platforms)

The easiest way to install PyTRiP98 is using pip [https://pypi.python.org/pypi/pip]:

.. note::

Pip comes pre-installed with Python newer than 3.4 and 2.7 (for 2.x family)

Administrator installation (root access)

Administrator installation is very simple, but requires to save some files in system-wide directories (i.e. /usr):

$ sudo pip install pytrip98

To upgrade the pytrip to newer version, simply type:

$ sudo pip install --upgrade pytrip98

To completely remove pytrip from your system, use following command:

$ sudo pip uninstall pytrip98

Now all pytrip commands should be installed for all users:

$ cubeslice --help

User installation (non-root access)

User installation will put the pytrip under hidden directory $HOME/.local.

To install the package, type in the terminal:

$ pip install pytrip98 --user

If pip command is missing on your system, replace pip with pip3 in abovementioned instruction.

To upgrade the pytrip to newer version, simply type:

$ pip install --upgrade pytrip98 --user

To completely remove pytrip from your system, use following command:

$ pip uninstall pytrip98

In most of modern systems all executables found in $HOME/.local/bin directory can be called
like normal commands (i.e. ls, cd). It means that after installation you should be able
to simply type in terminal:

$ cubeslice --help

If this is not the case, please prefix the command with $HOME/.local/bin and call it in the following way:

$ $HOME/.local/bin/cubeslice --help

PyTRiP User’s Guide

pytrip object model, description of classes, examples

Using PyTRiP as a library

The full potential of PyTRiP is exposed when using it as a library.

Using the dir() and help() methods, you may explore what functions are available, check also the index and module tables found in this documentation.

CT and Dose data are handled by the “CtxCube” and “DosCube” classes, respectively. Structures (volume of interests) are handled by the VdxCube class.
For instance, when a treatment plan was made the resulting 3D dose distribution (and referred to as a “DosCube”).

>>> import pytrip as pt
>>> dc = pt.DosCube()
>>> dc.read("foobar.dos")

You can display the entire doscube by simply printing its string
(str or repr) value:

>>> dc
....

We recommend you to take a look at the Examples and browse the Module Index page.

Converters

A few converters based on PyTRiP are supplied as well. These converters are:

	trip2dicom.py

	converts a Voxelplan formatted file to a Dicom file.

	dicom2trip.py

	converts a Dicom file to a Voxelplan formatted file.

	cubeslice.py

	Generates .png files for each slice found in the given cube.

	gd2dat.py

	Converts a GD formatted plot into a stripped ASCII-file

	gd2agr.py

	Converts a GD formatted plot into a a xmgrace [http://plasma-gate.weizmann.ac.il/Grace/] formatted plot.

	rst2sobp.py

	Converts a raster scan file to a file which can be read by FLUKA or SHIELD-HIT12A.

Examples

Code snippets demonstrating PyTRiP capabilities.

Example 00 - Cube arithmetic

This example demonstrates simple arithmetic on dose- and LET-cubes.
Two dose cubes from two fields are summed to generate a new total dose cube.

The two LET-cubes from the two fields are combined to calculate the total dose-averaged LET in the resulting treatment plan.
All data are saved to disk.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	"""
Simple example of how to do arithmetic on Cube objects in PyTRiP.
"""
import pytrip as pt

sum two dose cubes, write result:
print("Two half boxes: out.dos")
d1 = pt.DosCube()
d2 = pt.DosCube()
d1.read("box052000.dos")
d2.read("box053000.dos")
d = (d1 + d2)
d.write("out.dos")

print minium and maximum value found in cubes
print(d1.cube.min(), d1.cube.max())
print(d2.cube.min(), d2.cube.max())

calculate new dose average LET cube
l1 = pt.LETCube()
l2 = pt.LETCube()
l1.read("box052000.dosemlet.dos")
l2.read("box053000.dosemlet.dos")

let = ((d1 * l1) + (d2 * l2)) / (d1 + d2)
let.write("out.dosemlet.dos")

Example 01 - Handling structures

This example shows how one can select a region inside a CTX data cube using a VDX file, and perform some manipulation of it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	"""
This example shows how to use contours to select volume of interests inside a CTX cube. The VOI is then manipulated.
"""

import logging
import pytrip as pt

by default logging in PyTRiP98 is disabled, here we enable it to see it with basic INFO level
logging.basicConfig(level=logging.DEBUG)

first define some paths and other important parameters
ctx_path = "/home/bassler/Projects/CTdata/TST000/TST000000.ctx"
vdx_path = "/home/bassler/Projects/CTdata/TST000/TST000000.vdx"
my_target_voi = "GTV"

load CT cube
my_ctx = pt.CtxCube()
my_ctx.read(ctx_path)

load VOIs
my_vdx = pt.VdxCube(my_ctx) # my_vdx is the object which will hold all volumes of interest and the meta information
my_vdx.read(vdx_path) # load the .vdx file
print(my_vdx.voi_names()) # show us all VOIs found in the .vdx file

Select the requested VOI from the VdxCube object
target_voi = my_vdx.get_voi_by_name(my_target_voi)

get_voi_cube() returns a DosCube() object, where all voxels inside the VOI holds the value 1000, and 0 elsewhere.
voi_cube = target_voi.get_voi_cube()

Based on the retrieved DosCube() we calculate a three dimensional mask object,
which assigns True to all voxels inside the Voi, and False elsewhere.
mask = (voi_cube.cube == 1000)

"The mask object and the CTX cube have same dimensions (they are infact inherited from the same top level class).
Therefore we can apply the mask cube to the ctx cube and work with the values.
For instance we can set all HUs to zero within the Voi:
my_ctx.cube[mask] = 0
or add 100 to all HUs of the voxels inside the mask:
my_ctx.cube[mask] += 100

save masked CT to the file in current directory
masked_ctx = "masked.ctx"
my_ctx.write(masked_ctx)

Working with dose cubes is fully analogous to the CTX cubes.

Example 02 - TRiP execution

In this example, we demonstrate how to actually perform a treatment plan using TRiP98.
Most of the lines concern with the setup of TRiP.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105

	"""
This example demonstrates how to load a CT cube in Voxelplan format, and the associated contours.
Then a plan is prepared and optimized using TRiP98.
"""
import os
import logging

import pytrip as pt
import pytrip.tripexecuter as pte

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO) # give some output on what is going on.

Please adjust these paths according to location of the patient data (CT and contouring) and TRiP98 installation.
Fist we specify the directory where all our files are:
wdir = "/home/user/workspace" # working dir must exist.
patient_dir = "/home/user/data/yoda"
trip_path = "/home/user/usr/trip98"

In TRiP, the patient "TST000" would typically carry the filename "TST000000"
patient_name = "TST000000"

so we can construc the paths to the CTX and VDX files like this:
ctx_path = os.path.join(patient_dir, patient_name + ".ctx")
vdx_path = os.path.join(patient_dir, patient_name + ".vdx")

Next we load the CT cube:
c = pt.CtxCube()
c.read(ctx_path)

And load the contours
v = pt.VdxCube(c)
v.read(vdx_path)

we may print all contours found in the Vdx file, if we want to
print(v.voi_names())

We need to specify where the kernel files can be found. The location may depend on the ion we
want to treat with. This example sets up a kernel model for C-12 ions with a 3 mm Ripple Filter.
mykernel = pte.KernelModel()
mykernel.projectile = pte.Projectile("C", a=12)
mykernel.ddd_path = trip_path + "/DATA/DDD/12C/RF3MM/*"
mykernel.spc_path = trip_path + "/DATA/SPC/12C/RF3MM/*"
mykernel.sis_path = trip_path + "/DATA/SIS/19981218.sis"
mykernel.rifi_thickness = 3.0 # 3 mm ripple filter. (Only for documentaiton, will not affect dose optimization.)
mykernel.rifi_name = "GSI_1D_3mm" # Additional free text for documentation.
mykernel.comment = "Carbon-12 ions with 3 mm 1D Ripple Filter"

Ok, we have the Contours, the CT cube and dose kernels ready. Next we must prepare a plan.
We may choose any basename for the patient. All output files will be named using
this basename.
plan = pte.Plan(basename=patient_name, default_kernel=mykernel)

Plan specific data:
plan.hlut_path = trip_path + "/DATA/HLUT/19990218.hlut" # Hounsfield lookup table location
plan.dedx_path = trip_path + "/DATA/DEDX/20000830.dedx" # Stopping power tables
plan.working_dir = wdir

Set the plan target to the voi called "CTV"
plan.voi_target = v.get_voi_by_name('CTV')

some optional plan specific parameters (if not set, they will all be zero by default)
plan.bolus = 0.0 # No bolus is applied here. Set this to some value, if you are to optimize very shallow tumours.
plan.offh2o = 1.873 # Some offset mimicing the monitoring ionization chambers and exit window of the beam nozzle.

Next we need to specify at least one field, and add that field to the plan.
field = pte.Field(kernel=mykernel) # The ion speicies is selected by passing the corresponding kernel to the field.
field.basename = patient_name # This name will be used for output filenames, if any field specific output is saved.
field.gantry = 10.0 # degrees
field.couch = 90.0 # degrees
field.fwhm = 4.0 # spot size in [mm]

print(field) # We can print all parameters of this field, for checking.
plan.fields.append(field) # attach field to plan. You may attach multiple fields.

Next, set the flags for what output should be generated, when the plan has completed.
plan.want_phys_dose = True # We want a physical dose cube, "TST000000.dos"
plan.want_bio_dose = False # No biological cube (Dose * RBE)
plan.want_dlet = True # We want to have the dose-averaged LET cube
plan.want_rst = False # Print the raster scan files (.rst) for all fields.

print(plan) # this will print all plan parameters

te = pte.Execute(c, v) # get the executer object, based on the given Ctx and Vdx cube.

in the case that TRiP98 is not installed locally, you may have to enable remote execution:
te.remote = True
te.servername = "titan.phys.au.dk"
te.username = "bassler"
te.password = "xxxxxxxx" # you can set a password, but this is strongly discouraged. Better to exchange SSH keys!
te.remote_base_dir = "/home/bassler/test"
#
Depending on the remote .bashrc_profile setup, it may be needed to specify the full path
for the remote TRiP installation. On some systems the $PATH is set, so this line can be omitted,
or shortened to just "TRiP98" :
te.trip_bin_path = trip_path + "/bin/TRiP98"

te.execute(plan) # this will run TRiP
te.execute(plan, False) # set to False, if TRiP98 should not be executed. Good for testing.

requested results can be found in
plan.dosecubes[]
and
plan.letcubes[]
and they are also saved to working_dir

Credits

Development

	Niels Bassler - Stockholm University, Sweden

	Leszek Grzanka - IFJ-PAN, Poland <leszek.grzanka@gmail.com>

	Jakob Toftegaard - Aarhus University Hospital, Denmark

Contributors

None yet. Why not be the first?

How to cite PyTRiP98

If you use PyTRiP for your research, please cite:

	1

	Toftegaard et al. “PyTRiP - a toolbox and GUI for the proton/ion therapy planning system TRiP”, Journal of Physics: Conference Series 489 (2014) 012045. doi: 10.1088/1742-6596/489/1/012045 [http://doi.org/10.1088/1742-6596/489/1/012045]

Others

PyTRiP is using cntr.c code from matplotlib v2.1.2 (code is copied into PyTRiP sources).

pytrip package

Subpackages

	pytrip.res package
	Submodules
	pytrip.res.contour module

	pytrip.res.interpolate module

	pytrip.res.point module

	pytrip.res.utils module

	pytrip.tripexecuter package
	Submodules
	pytrip.tripexecuter.execparser module

	pytrip.tripexecuter.execute module

	pytrip.tripexecuter.executor_logger module

	pytrip.tripexecuter.field module

	pytrip.tripexecuter.kernel module

	pytrip.tripexecuter.plan module

	pytrip.tripexecuter.projectile module

	pytrip.utils package
	Submodules
	pytrip.utils.bevlet2oer module

	pytrip.utils.cubeslice module

	pytrip.utils.dicom2trip module

	pytrip.utils.dvhplot module

	pytrip.utils.gd2agr module

	pytrip.utils.gd2dat module

	pytrip.utils.rst2sobp module

	pytrip.utils.rst_plot module

	pytrip.utils.spc2pdf module

	pytrip.utils.trip2dicom module

Submodules

	pytrip.ctx module

	pytrip.cube module

	pytrip.ddd module

	pytrip.dicomhelper module

	pytrip.dos module

	pytrip.error module

	pytrip.field module

	pytrip.file_parser module

	pytrip.let module

	pytrip.paths module

	pytrip.raster module

	pytrip.util module

	pytrip.vdx module

pytrip.res package

Submodules

	pytrip.res.contour module

	pytrip.res.interpolate module

	pytrip.res.point module

	pytrip.res.utils module

pytrip.res.contour module

pytrip.res.interpolate module

pytrip.res.point module

pytrip.res.utils module

pytrip.tripexecuter package

Submodules

	pytrip.tripexecuter.execparser module

	pytrip.tripexecuter.execute module

	pytrip.tripexecuter.executor_logger module

	pytrip.tripexecuter.field module

	pytrip.tripexecuter.kernel module

	pytrip.tripexecuter.plan module

	pytrip.tripexecuter.projectile module

pytrip.tripexecuter.execparser module

pytrip.tripexecuter.execute module

pytrip.tripexecuter.executor_logger module

pytrip.tripexecuter.field module

pytrip.tripexecuter.kernel module

pytrip.tripexecuter.plan module

pytrip.tripexecuter.projectile module

pytrip.utils package

Submodules

	pytrip.utils.bevlet2oer module

	pytrip.utils.cubeslice module

	pytrip.utils.dicom2trip module

	pytrip.utils.dvhplot module

	pytrip.utils.gd2agr module

	pytrip.utils.gd2dat module

	pytrip.utils.rst2sobp module

	pytrip.utils.rst_plot module

	pytrip.utils.spc2pdf module

	pytrip.utils.trip2dicom module

pytrip.utils.bevlet2oer module

pytrip.utils.cubeslice module

pytrip.utils.dicom2trip module

pytrip.utils.dvhplot module

pytrip.utils.gd2agr module

pytrip.utils.gd2dat module

pytrip.utils.rst2sobp module

pytrip.utils.rst_plot module

pytrip.utils.spc2pdf module

pytrip.utils.trip2dicom module

pytrip.ctx module

pytrip.cube module

pytrip.ddd module

pytrip.dicomhelper module

pytrip.dos module

pytrip.error module

pytrip.field module

pytrip.file_parser module

pytrip.let module

pytrip.paths module

pytrip.raster module

pytrip.util module

pytrip.vdx module

Index

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/pytrip/pytrip/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs or Implement Features

Look through the GitHub issues for bugs or features.
Anything tagged with “bug” or “feature” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

pytrip could always use more documentation, whether as part of the
official pytrip docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/pytrip/pytrip/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started for GIT-aware developers

Ready to contribute? Here’s how to set up pytrip for local development.
We assume you are familiar with GIT source control system. If not you will
other instruction at the end of this page.

	Fork the pytrip repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pytrip.git

	If you are not familiar with GIT, proceed to step 5, otherwise create a branch for local development:

$ cd pytrip
$ git checkout -b feature/issue_number-name_of_your_bugfix_or_feature

	Now you can make your changes locally.

As the software is prepared to be shipped as pip package, some modifications
of PYTHONPATH variables are needed to run the code. Let us assume you are now in the same directory as setup.py file.

The standard way to execute Python scripts WILL NOT WORK:

$ python pytrip/utils/cubeslice.py --help

It will probably give you a traceback like this one:

Traceback (most recent call last):
File ".\pytrip\utils\cubeslice.py", line 29, in <module>
 import pytrip as pt
ModuleNotFoundError: No module named 'pytrip'

To have the code working (as a developer), you need to call the files as python modules.
In this way python interpreter will set properly all directories needed for proper imports:

$ python -m pytrip.utils.cubeslice --help
usage: cubeslice.py [-h] [--data [DATA]] [--ct [CT]] [-v] [-f N] [-t M] [-H]
 [-o OUTPUTDIR]

(...)

	Make local changes to fix the bug or to implement a feature.

	When you’re done making changes, check that your changes comply with PEP8 code quality standards (flake8 tests) run pytest tests:

$ pep8 --max-line-length=120 pytrip tests
$ flake8 --max-line-length=120 pytrip tests
$ pytest

To get pep8, flake8 and pytest, just pip install them.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."

	Repeat points 4-6 until the work is done. Now its time to push the changes to remote repository:

$ git push origin feature/issue_number-name_of_your_bugfix_or_feature

	Submit a pull request through the GitHub website to the master branch of git@github.com:pytrip/pytrip.git repository.

	Check the status of automatic tests

You can find them on the pull request webpage https://github.com/pytrip/pytrip/pulls.
In case some of the tests fails, fix the problem. Then commit and push your changes (steps 5-8).

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.5-3.10. Check
https://github.com/pytrip/pytrip/actions
and make sure that the tests pass for all supported Python versions.

Get Started for non-GIT developers

	Fetch the code from remote GIT repository to your local directory:

$ git clone git@github.com:pytrip/pytrip.git

	Follow steps 4-6 from the instruction for GIT-aware developers. To run code locally, prefix usual calls with PYTHONPATH=.:

$ python -m pytrip.utils.cubeslice --help

	usage: cubeslice.py [-h] [–data [DATA]] [–ct [CT]] [-v] [-f N] [-t M] [-H]

	[-o OUTPUTDIR]

(…)

Make your changes and check that they comply with PEP8 code quality standards (flake8 tests) and run pytest:

$ flake8 pytrip tests
$ pytest

	Compress your working directory and send it to us by email (see authors), describing your changes.

Tips

To run full tests type:

$ pytest

To run only a single test type:

$ python -m pytest tests/test_file_to_run.py

Nomenclature

	Classes: CamelTyped. Example: class CtxCube()

	
	Methods and functions: lowercase , typically containing a verb and separated by underscore. Example: def save_cube()

	
	avoid get_* and set_* functions as this is not pythonic.

	Attributes and variables: lowercase and typically consisting of one or more nouns separated by underscore. Example: self.target_dose

	Functions, class methods, attributes etc which are not supposed to be accessed by users should be prefixed with underscore i.e. _foobar

	Directories, paths and filenames should be named following this scheme:

	
	Filenames

	
	funk.dat : filename

	funk : basename

	
	Directories

	
	/home/bassler/foobar : absolute directory abs_dir

	./foobar : relative directory rel_dir

	or just dir if both may be applicable.

	
	Paths

	
	/home/bassler/foobar/funk.dat : absolute abs_path

	foobar/funk.dat : (relative) path rel_path

	prefix path with root_ if it is without file extension.

	/home/bassler/foobar/funk : root path root_path

	./foobar/funk : root path root_path

	or just path if any may be applicable.

	
	More details on attribute name prefixes:

	
	abs_ -> absolute path to file or directory, starting with / or C:\ (see os.path.abspath)

	root_ -> root part of path (may be absolute or relative, see os.path.splitext)

	rel_ -> relative path (see os.path.relpath)

PyTRiP98

PyTRiP98 is a python package for working with TRiP98 and VIRTUOS/VOXELPLAN files.
It is mainly supposed for batch processing, but an experimental GUI is also included
(see https://github.com/pytrip/pytripgui).

PyTRiP provides several command-line applications including trip2dicom, dicom2trip and cubeslice.
They works under Linux, Windows and Mac OSX operating systems
(interpreter of Python programming language has to be also installed).
No programming knowledge is required from the user, but basic skills in working with the console are needed to use them.

Documentation

Full PyTRiP documentation can be found here: https://pytrip.readthedocs.io/

See Getting Started [https://pytrip.readthedocs.org/en/stable/getting_started.html] for installation and basic
information, and the User’s Guide [https://pytrip.readthedocs.org/en/stable/user_guide.html] for an overview of
how to use the PyTRiP library.

Technical documentation

[image: _images/pytrip98.svg]
 [https://pypi.python.org/pypi/pytrip98][image: Documentation Status]
 [https://readthedocs.org/projects/pytrip/?badge=latest]

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/pytrip]

	tests

	[image: Github Action Build Status] [https://github.com/pytrip/pytrip/actions] [image: Appveyor Build Status] [https://ci.appveyor.com/project/grzanka/pytrip]

	package

	[image: PyPI Package latest release] [https://pypi.python.org/pypi/pytrip98] [image: PyPI Package monthly downloads] [https://pypi.python.org/pypi/pytrip98] [image: PyPI Wheel] [https://pypi.python.org/pypi/pytrip98] [image: Supported versions] [https://pypi.python.org/pypi/pytrip98] [image: Supported implementations] [https://pypi.python.org/pypi/pytrip98]

Documentation

https://pytrip.readthedocs.io/

pytrip

	pytrip package
	Subpackages
	pytrip.res package
	Submodules

	pytrip.tripexecuter package
	Submodules

	pytrip.utils package
	Submodules

	Submodules
	pytrip.ctx module

	pytrip.cube module

	pytrip.ddd module

	pytrip.dicomhelper module

	pytrip.dos module

	pytrip.error module

	pytrip.field module

	pytrip.file_parser module

	pytrip.let module

	pytrip.paths module

	pytrip.raster module

	pytrip.util module

	pytrip.vdx module

pytrip.models.extra module

pytrip.models.proton module

pytrip.models.rcr module

pytrip.models.tcp module

pytrip.models package

Submodules

	pytrip.models.extra module

	pytrip.models.proton module

	pytrip.models.rcr module

	pytrip.models.tcp module

pytrip.spc module

pytrip.volhist module

 _static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 PyTRiP98 Documentation

 		
 Getting Started with PyTRiP

 		
 Introduction

 		
 Quick Installation Guide

 		
 Using PyTRiP

 		
 Support

 		
 Next Steps

 		
 License

 		
 Detailed Installation Guide

 		
 Prerequisites

 		
 Installing using pip (all platforms)

 		
 Administrator installation (root access)

 		
 User installation (non-root access)

 		
 PyTRiP User’s Guide

 		
 Using PyTRiP as a library

 		
 Converters

 		
 Examples

 		
 Example 00 - Cube arithmetic

 		
 Example 01 - Handling structures

 		
 Example 02 - TRiP execution

 		
 Credits

 		
 Development

 		
 Contributors

 		
 How to cite PyTRiP98

 		
 Others

 		
 Source Code

 		
 Subpackages

 		
 pytrip.res package

 		
 pytrip.tripexecuter package

 		
 pytrip.utils package

 		
 Submodules

 		
 pytrip.ctx module

 		
 pytrip.cube module

 		
 pytrip.ddd module

 		
 pytrip.dicomhelper module

 		
 pytrip.dos module

 		
 pytrip.error module

 		
 pytrip.field module

 		
 pytrip.file_parser module

 		
 pytrip.let module

 		
 pytrip.paths module

 		
 pytrip.raster module

 		
 pytrip.util module

 		
 pytrip.vdx module

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/up-pressed.png

_static/up.png

