pytrip98 Documentation
Release 3.8.0

Author

Nov 14, 2022

Contents

Getting Started with PyTRiP 3
L1 Introduction v it e e e e e e e e e e e e e e e 3
1.2 Quick Installation Guide e e e e e 4
1.3 Using PyTRIiP o e e 4
L4 SUpport . . . oo e e e e e e 4
1.5 NeXESIEPS . v o v v o ot e 4
1.6 LICENSE v o i e e e e e e e e e e 4
Detailed Installation Guide 5
2.1 PrerequiSites . . . v v v v e 5
2.2 Installing using pip (all platforms) e 6
PyTRIiP User’s Guide 7
3.1 Using PyTRiPasalibrary 0 0 e e e e e e e e 7
3.2 CONVEIIETS . v v v v v e v e 7
Examples 9
4.1 Example 00 - Cube arithmetic 0 o e e e e e e e e 9
4.2 Example O1 - Handling structures vttt e 10
43 Example 02 - TRiP execution 11
Credits 15
5.1 Development L e e e e e e e e e e e e e 15
5.2 ContribUtors e e e e e e e e e e e e e 15
53 Howtocite PyTRIPI8 e 15
54 Others e e 15
pytrip package 17
6.1 Subpackages e e e 17
6.2 Submodules e e 19
Indices and tables 21

pytrip98 Documentation, Release 3.8.0

Contents:

Contents 1

pytrip98 Documentation, Release 3.8.0

2 Contents

CHAPTER 1

Getting Started with PyTRIiP

Brief overview of PyTRiP98 and how to install it.

1.1 Introduction

PyTRiP98 is a python package for working with files generated by the treatment planning systems TRiP98 and VIR-
TUOS/VOXELPLAN. Dicom files are also to some extent supported.

PyTRiP will simplify importing and exporting files, processing the data, and also execute TRiP98 locally or remotely.
Thereby it is possible to work with TRiP98 in e.g. a Windows environment, while accessing TRiP98 on a remote
server. PyTRiP enables scripting for large parameters studies of treatment plans, and also more advanced and au-
tomized manipulation than what commercial treatment planning systems might allow.

Let us for instance assume, that one wants (for whatever reason) to reduce all Hounsfield units in a CT cube with a
factor of two and write the result into a new file, this can be realized with a few lines of code.

>>> import pytrip as pt
>>> ¢ = pt.CtxCube()
>>> c.read ("tst000001.ctx") # read a .ctx file

Where the first line imports the pytrip modules, the second line initialized the CtxCube object. The new object holds
(among others) the read() method, which is then being used to load the CT data. Now let’s work with the CT data:

’>>> c = 0.5 # reduce all HUs inside c¢ with a factor of two

and write it to disk.

>>> c.write("out0000001.ctx") # write the new file.

And that all.

We may want to inspect the data, what is the largest and the smalles HU value found in the cube?

>>> print (c.cube.min())
>>> print (c.cube.max())

http://bio.gsi.de/DOCS/TRiP98/PRO/DOCS/trip98.html
https://www.dkfz.de/en/medphys/Therapy_planning_development/Projects/Virtuos.html
https://www.dkfz.de/en/medphys/Therapy_planning_development/Projects/Virtuos.html

pytrip98 Documentation, Release 3.8.0

To see all available methods and attributes, one can run the

’>>> dir (c)

command, or read the detailed documentation.

1.2 Quick Installation Guide

PyTRIP is available for python 2.7, 3.5 or later, and can be installed via pip. If you intend to use pytripgui you need
the python 2.7 version.

We recommend that you run a modern Linux distribution, like: Ubuntu 16.04 or newer, Debian 9 Stretch (currently
known as testing) or any updated rolling release (archLinux, openSUSE tumbleweed). In that case, be sure you have
python and python-pip installed. To get them on Debian or Ubuntu, type being logged in as normal user:

’$ sudo apt-get install python-pip

To automatically download and install the pytrip library, type:

’$ sudo pip install pytrip98

NOTE: the package is named pytrip98, while the name of library is pytrip.
This command will automatically download and install pytrip for all users in your system.
For more detailed instruction, see the Detailed Installation Guide

To learn how to install pytripgui graphical user interface, proceed to following document page: https://github.com/
pytrip/pytripgui

1.3 Using PyTRiP

Once installed, the package can be imported at a python command line or used in your own python program with
import pytrip as pt. See the examples directory for both kinds of uses. Also see the User’s Guide for more
details of how to use the package.

1.4 Support

Bugs can be submitted through the issue tracker. Besides the example directory, cookbook recipes are encouraged to
be posted on the wiki page

1.5 Next Steps

To start learning how to use PyTRIiP, see the PyTRiP User’s Guide.

1.6 License

PyTRiP98 is licensed under GPLv3.

4 Chapter 1. Getting Started with PyTRiP

https://github.com/pytrip/pytripgui
https://github.com/pytrip/pytripgui
https://github.com/pytrip/pytrip/tree/examples
https://github.com/pytrip/pytrip/issues
https://github.com/pytrip/pytrip/wiki
https://github.com/pytrip/pytrip/blob/master/source/GPL_LICENSE

CHAPTER 2

Detailed Installation Guide

Installation guide is divided in two phases: checking the prerequisites and main package installation.

2.1 Prerequisites

PyTRIiP works under Linux and Mac OSX operating systems.

First we need to check if Python interpreter is installed. Try if one of following commands (printing Python version)
works:

$ python —--version
$ python3 --version

At the time of writing Python language interpreter has two popular versions: 2.x (Python 2) and 3.x (Python 3)
families. Command python invokes either Python 2 or 3, while python3 can invoke only Python 3.

pytrip supports most of the modern Python versions, mainly: 2.7, 3.5 - 3.10. Check if your interpreter version is
supported.

If none of python and python3 commands are present, then Python interpreter has to be installed.
We suggest to use the newest version available (from 3.x family).
Python installers can be found at the python web site (http://python.org/download/).
PyTRIP also relies on these packages:
e NumPy — Better arrays and data processing.
» matplotlib — Needed for plotting.
* paramiko — Needed for remote execution of TRiP98 via SSH.

and if they are not installed beforehand, these will automatically be fetched by pip.

http://python.org/download/
http://www.numpy.org/
http://matplotlib.org/
http://www.paramiko.org/

pytrip98 Documentation, Release 3.8.0

2.2 Installing using pip (all platforms)

The easiest way to install PyTRiP98 is using pip:

’.. note::

Pip comes pre-installed with Python newer than 3.4 and 2.7 (for 2.x family)

2.2.1 Administrator installation (root access)

Administrator installation is very simple, but requires to save some files in system-wide directories (i.e. /usr):

’$ sudo pip install pytrip98

To upgrade the pytrip to newer version, simply type:

’$ sudo pip install --upgrade pytrip98

To completely remove pytrip from your system, use following command:

’$ sudo pip uninstall pytrip98

Now all pytrip commands should be installed for all users:

’$ cubeslice —--help

2.2.2 User installation (non-root access)

User installation will put the pytrip under hidden directory SHOME/.local.

To install the package, type in the terminal:

’$ pip install pytrip98 --user

If pip command is missing on your system, replace pip with pip3 in abovementioned instruction.

To upgrade the pytrip to newer version, simply type:

’$ pip install --upgrade pytrip98 --user

To completely remove pytrip from your system, use following command:

’$ pip uninstall pytrip98

In most of modern systems all executables found in $HOME/.local/bin directory can be called like normal commands
(i.e. Is, cd). It means that after installation you should be able to simply type in terminal:

’$ cubeslice --help

If this is not the case, please prefix the command with SHOME/.local/bin and call it in the following way:

’$ SHOME/.local/bin/cubeslice —-help

6 Chapter 2. Detailed Installation Guide

https://pypi.python.org/pypi/pip

CHAPTER 3

PyTRIiP User's Guide

pytrip object model, description of classes, examples
3.1 Using PyTRIP as a library

The full potential of PyTRIiP is exposed when using it as a library.

Using the dir() and help() methods, you may explore what functions are available, check also the index and module
tables found in this documentation.

CT and Dose data are handled by the “CtxCube” and “DosCube” classes, respectively. Structures (volume of interests)
are handled by the VdxCube class. For instance, when a treatment plan was made the resulting 3D dose distribution
(and referred to as a “DosCube”).

>>> import pytrip as pt
>>> dc = pt.DosCube ()
>>> dc.read("foobar.dos")

You can display the entire doscube by simply printing its string (str or repr) value:

>>> dc

We recommend you to take a look at the Examples and browse the modindex page.

3.2 Converters

A few converters based on PyTRiP are supplied as well. These converters are:
trip2dicom.py converts a Voxelplan formatted file to a Dicom file.
dicom2trip.py converts a Dicom file to a Voxelplan formatted file.

cubeslice.py Generates .png files for each slice found in the given cube.

pytrip98 Documentation, Release 3.8.0

gd2dat.py Converts a GD formatted plot into a stripped ASCII-file
gd2agr.py Converts a GD formatted plot into a a xmgrace formatted plot.

rst2sobp.py Converts a raster scan file to a file which can be read by FLUKA or SHIELD-HIT12A.

8 Chapter 3. PyTRIiP User’s Guide

http://plasma-gate.weizmann.ac.il/Grace/

20
21
22

23

CHAPTER 4

Examples

Code snippets demonstrating PyTRiP capabilities.

4.1 Example 00 - Cube arithmetic

This example demonstrates simple arithmetic on dose- and LET-cubes. Two dose cubes from two fields are summed
to generate a new total dose cube.

The two LET-cubes from the two fields are combined to calculate the total dose-averaged LET in the resulting treat-
ment plan. All data are saved to disk.

mwn

Simple example of how to do arithmetic on Cube objects in PyTRiP.

mmn

import pytrip as pt

sum two dose cubes, write result:
print ("Two half boxes: out.dos")

dl = pt.DosCube ()

d2 = pt.DosCube ()

dl.read ("box052000.dos™)

d2.read ("box053000.dos™")

d = (dl + d2)

d.write ("out.dos")

print minium and maximum value found in cubes
print (dl.cube.min(), dl.cube.max())
print (d2.cube.min (), d2.cube.max())

calculate new dose average LET cube
11 = pt.LETCube ()

12 = pt.LETCube ()

1l.read ("box052000.dosemlet .dos")
12.read ("box053000.dosemlet .dos™)

(continues on next page)

24

25

26

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

pytrip98 Documentation, Release 3.8.0

(continued from previous page)

let = ((dl % 11) + (d2 = 12)) / (dl + d2)
let.write ("out.dosemlet.dos")

4.2 Example 01 - Handling structures

This example shows how one can select a region inside a CTX data cube using a VDX file, and perform some manip-
ulation of it.

mmwn

This example shows how to use contours to select volume of interests inside a CTX_
—cube. The VOI is then manipulated.

mmwn

import logging
import pytrip as pt

by default logging in PyTRiP98 is disabled, here we enable it to see it with basic,
—INFO level
logging.basicConfig(level=logging.DEBUG)

first define some paths and other important parameters

ctx_path = "/home/bassler/Projects/CTdata/TST000/TST000000.ctx"
vdx_path = "/home/bassler/Projects/CTdata/TST000/TST000000.vdx"
my_target_voi = "GTV"

load CT cube
my_ctx = pt.CtxCube ()
my_ctx.read(ctx_path)

load VOIs

my_vdx = pt.VdxCube (my_ctx) # my_vdx is the object which will hold all volumes of,_
—interest and the meta information

my_vdx.read (vdx_path) # load the .vdx file

print (my_vdx.voi_names ()) # show us all VOIs found in the .vdx file

Select the requested VOI from the VdxCube object
target_voi = my_vdx.get_voi_by_name (my_target_voi)

get_voi_cube () returns a DosCube () object, where all voxels inside the VOI holds
—~the value 1000, and 0 elsewhere.
voi_cube = target_voi.get_voi_cube ()

[

Based on the retrieved DosCube () we calculate a three dimensional mask object,
which assigns True to all voxels inside the Voi, and False elsewhere.
mask = (voi_cube.cube == 1000)

"The mask object and the CTX cube have same dimensions (they are infact inherited,
—from the same top level class).

Therefore we can apply the mask cube to the ctx cube and work with the values.

For instance we can set all HUs to zero within the Voi:

my_ctx.cube[mask] = 0

or add 100 to all HUs of the voxels inside the mask:

my_ctx.cube[mask] += 100

(continues on next page)

10 Chapter 4. Examples

41

42

43

44

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

pytrip98 Documentation, Release 3.8.0

(continued from previous page)

save masked CT to the file in current directory
masked_ctx = "masked.ctx"
my_ctx.write (masked_ctx)

Working with dose cubes is fully analogous to the CTX cubes.

4.3 Example 02 - TRiP execution

In this example, we demonstrate how to actually perform a treatment plan using TRiP98. Most of the lines concern
with the setup of TRiP.

mmwn

This example demonstrates how to load a CT cube in Voxelplan format, and the_
—associated contours.

Then a plan is prepared and optimized using TRiP98.

mmn

import os

import logging

import pytrip as pt
import pytrip.tripexecuter as pte

logger = logging.getLogger (__name_)
logging.basicConfig(level=logging.INFO) # give some output on what is going on.

Please adjust these paths according to location of the patient data (CT and,_
—contouring) and TRiP98 installation.
Fist we specify the directory where all our files are:

wdir = "/home/user/workspace" # working dir must exist.
patient_dir = "/home/user/data/yoda"
trip_path = "/home/user/usr/trip98"

In TRiP, the patient "TST000" would typically carry the filename "TST000000"
patient_name = "TST000000"

so we can construc the paths to the CTX and VDX files like this:
ctx_path = os.path.join(patient_dir, patient_name + ".ctx")
vdx_path os.path.join(patient_dir, patient_name + ".vdx")

Next we load the CT cube:
c = pt.CtxCube ()
c.read (ctx_path)

And load the contours
v = pt.VdxCube (c)
v.read (vdx_path)

we may print all contours found in the Vdx file, if we want to
print (v.voi_names())

We need to specify where the kernel files can be found. The location may depend on,,
—the ion we

want to treat with. This example sets up a kernel model for C-12 ions with a 3 mm_
—Ripple Filter.

(continues on next page)

4.3. Example 02 - TRiP execution 11

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

81

82

83

84

85

86

pytrip98 Documentation, Release 3.8.0

(continued from previous page)

mykernel = pte.KernelModel ()

mykernel.projectile = pte.Projectile("C", a=12)
mykernel.ddd_path = trip_path + "/DATA/DDD/12C/RE3MM/*"
mykernel.spc_path = trip_path + "/DATA/SPC/12C/RE3MM/ "
mykernel.sis_path = trip_path + "/DATA/SIS/19981218.sis"

mykernel.rifi_thickness = 3.0 # 3 mm ripple filter. (Only for documentaiton, will_
—not affect dose optimization.)

mykernel.rifi_name = "GSI_1D_3mm" # Additional free text for documentation.
mykernel.comment = "Carbon-12 ions with 3 mm 1D Ripple Filter"

Ok, we have the Contours, the CT cube and dose kernels ready. Next we must prepare,
—a plan.

We may choose any basename for the patient. All output files will be named using

this basename.

plan = pte.Plan (basename=patient_name, default_kernel=mykernel)

Plan specific data:

plan.hlut_path = trip_path + "/DATA/HLUT/19990218.hlut" # Hounsfield lookup table_
—location

plan.dedx_path = trip_path + "/DATA/DEDX/20000830.dedx" # Stopping power tables
plan.working dir = wdir

Set the plan target to the voi called "CTV"
plan.voi_target = v.get_voi_by_name ('CTV")

some optional plan specific parameters (if not set, they will all be zero by,
—default)

plan.bolus = 0.0 # No bolus is applied here. Set this to some value, 1f you are to_
—optimize very shallow tumours.

plan.offh20 = 1.873 # Some offset mimicing the monitoring ionization chambers and,_
—exit window of the beam nozzle.

Next we need to specify at least one field, and add that field to the plan.

field = pte.Field(kernel=mykernel) # The ion speicies 1is selected by passing the_
—corresponding kernel to the field.

field.basename = patient_name # This name will be used for output filenames, 1if any,
—field specific output is saved.

field.gantry = 10.0 # degrees

field.couch = 90.0 # degrees

field.fwhm = 4.0 # spot size in [mm]

print (field) # We can print all parameters of this field, for checking.
plan.fields.append(field) # attach field to plan. You may attach multiple fields.

Next, set the flags for what output should be generated, when the plan has,_
—completed.

plan.want_phys_dose = True # We want a physical dose cube, "TST000000.dos"
plan.want_bio_dose = False # No biological cube (Dose * RBE)

plan.want_dlet = True # We want to have the dose-averaged LET cube
plan.want_rst = False # Print the raster scan files (.rst) for all fields.

print (plan) # this will print all plan parameters

te = pte.Execute(c, v) # get the executer object, based on the given Ctx and Vdx_
—cube.

in the case that TRiP98 is not installed locally, you may have to enable remote_

—execution: (continues on next page)

12 Chapter 4. Examples

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

pytrip98 Documentation, Release 3.8.0

(continued from previous page)

te.remote = True

te.servername = "titan.phys.au.dk"
te.username = "bassler"

te.password = "xxxxxxxx"

—discouraged. Better to exchange SSH keys!

te.remote_base_dir = "/home/bassler/test"

#

Depending on the remote .bashrc_profile setup,
—path

for the remote TRiP installation.
—~can be omitted,

or shortened to just "TRiP98"
te.trip _bin path = trip path + "/bin/TRiP98"
this will run TRiP
False) # set to False,

te.execute (plan)
te.execute (plan,
—~testing.

requested results can be found in
plan.dosecubes|[]

and

plan.letcubes/[]

and they are also saved to working dir

R S S S

On some systems the $PATH is set,

you can set a password, but this is strongly,,

it may be needed to specify the full,

so this line_

if TRiP98 should not be executed. Good for,

4.3. Example 02 - TRiP execution

13

pytrip98 Documentation, Release 3.8.0

14 Chapter 4. Examples

CHAPTER B

Credits

5.1 Development

* Niels Bassler - Stockholm University, Sweden
* Leszek Grzanka - IFJ-PAN, Poland <leszek.grzanka@ gmail.com>

* Jakob Toftegaard - Aarhus University Hospital, Denmark

5.2 Contributors

None yet. Why not be the first?

5.3 How to cite PyTRiP98

If you use PyTRIP for your research, please cite:

5.4 Others

PyTRIP is using cntr.c code from matplotlib v2.1.2 (code is copied into PyTRiP sources).

15

mailto:leszek.grzanka@gmail.com

pytrip98 Documentation, Release 3.8.0

16 Chapter 5. Credits

CHAPTER O

pytrip package

6.1 Subpackages

6.1.1 pytrip.res package
Submodules

pytrip.res.contour module
pytrip.res.interpolate module
pytrip.res.point module

pytrip.res.utils module

6.1.2 pytrip.tripexecuter package

Submodules

pytrip.tripexecuter.execparser module
pytrip.tripexecuter.execute module
pytrip.tripexecuter.executor_logger module
pytrip.tripexecuter.field module

pytrip.tripexecuter.kernel module

17

pytrip98 Documentation, Release 3.8.0

pytrip.tripexecuter.plan module

pytrip.tripexecuter.projectile module

6.1.3 pytrip.utils package
Submodules

pytrip.utils.bevlet2oer module
pytrip.utils.cubeslice module
pytrip.utils.dicom2trip module
pytrip.utils.dvhplot module
pytrip.utils.gd2agr module
pytrip.utils.gd2dat module
pytrip.utils.rst2sobp module
pytrip.utils.rst_plot module

pytrip.utils.spc2pdf module

18

Chapter 6. pytrip package

pytrip98 Documentation, Release 3.8.0

pytrip.utils.trip2dicom module

6.2 Submodules

6.2.1 pytrip.ctx module

6.2.2 pytrip.cube module

6.2.3 pytrip.ddd module

6.2.4 pytrip.dicomhelper module
6.2.5 pytrip.dos module

6.2.6 pytrip.error module

6.2.7 pytrip.field module

6.2.8 pytrip.file_parser module
6.2.9 pytrip.let module

6.2.10 pytrip.paths module
6.2.11 pytrip.raster module
6.2.12 pytrip.util module

6.2.13 pytrip.vdx module

6.2. Submodules 19

pytrip98 Documentation, Release 3.8.0

20 Chapter 6. pytrip package

CHAPTER /

Indices and tables

* genindex
* modindex

e search

21

	Getting Started with PyTRiP
	Introduction
	Quick Installation Guide
	Using PyTRiP
	Support
	Next Steps
	License

	Detailed Installation Guide
	Prerequisites
	Installing using pip (all platforms)

	PyTRiP User’s Guide
	Using PyTRiP as a library
	Converters

	Examples
	Example 00 - Cube arithmetic
	Example 01 - Handling structures
	Example 02 - TRiP execution

	Credits
	Development
	Contributors
	How to cite PyTRiP98
	Others

	pytrip package
	Subpackages
	Submodules

	Indices and tables

